PH5005
Laser Physics and Design
2024-2025
15
7
SCQF level 11
1
Academic year(s): 2024-2025
SCOTCAT credits : 15
ECTS credits : 7
Level : SCQF level 11
Semester: 1
Availability restrictions: Normally only taken in the final year of an MPhys or MSci programme involving the School
Quantitative treatment of laser physics including rate equations; transient/dynamic behaviour of laser oscillators including relaxation oscillations, Q-switching, cavity dumping and mode locking, single-frequency selection and frequency scanning, design analysis of optically-pumped solid state lasers, laser amplifiers and optical resonators. An emphasis is placed on how understanding of laser physics can be used to design useful laser systems.
Pre-requisite(s): Before taking this module you must pass PH3007 and pass PH3061 and pass PH3062
Anti-requisite(s): You cannot take this module if you take PH4034
Weekly contact: 3 lectures or tutorials
Scheduled learning hours: 30
Guided independent study hours: 120
As used by St Andrews: 2.5-hour open-notes Written Examination = 80%, Coursework = 20%
Re-assessment: Oral Re-assessment, capped at grade 7
Overview
The course is designed to introduce the student to the classical treatment of laser physics providing the necessary quantitative techniques to permit design and prediction. A rate-equation model is used to model the laser system. In this course a number of variations are explored with regard to their applicability and limitations. The design of optical resonators for a variety of applications is discussed. Learning is assisted through the incorporation into the course of animations and numerical modelling material. (The latter is the 'Psst' software, which may be downloaded free for personal use.)
Aims & Objectives
The course aims to develop a working knowledge and conceptual understanding of important topics in contemporary laser physics at a quantitative level. A key objective is to enable the student to undertake quantitative problem-solving relating to the design, performance and applications of lasers through thereby acquiring an ability to put such knowledge into practice by way of numerical calculations. The aim throughout is to provide a thorough grounding in basic principles and their application, so that by the end of the course the student will have acquired a range of essential skills and knowledge required by a practitioner of laser physics and engineering. Such knowledge of the basics will be of enduring value and relevance. It will enable the student to innovate, design and analyse laser devices and systems at a quantitative level. As well as developing the conceptual framework the course also aims to give a sound perspective of contemporary trends and developments in laser physics, particularly with regard to new schemes for the generation of coherent electromagnetic radiation and the associated devices.
Learning Outcomes
You will have acquired:
Synopsis
Additional information on continuous assessment etc.
Please note that the definitive comments on continuous assessment will be communicated within the module. This section is intended to give an indication of the likely breakdown and timing of the continuous assessment.
The first part of the module looks at the key underlying ideas of laser physics. After an introduction we look at laser gain. We then turn our attention to laser modes, both longitudinal and transverse. There follows a treatment of time dependence in lasers, based on coupled rate equations, and taking in relaxation oscillations and Q-switching. The remainder of the module looks at how all these ideas can be applied to understand and design various laser systems including ultrashort pulse lasers and semiconductor diode lasers. Tutorials provide a way to practice using these ideas and to discuss questions. A group-based laser design case study with associated feedback allows a more in-depth exploration of design of a particular laser system.
Laser Design Case Study 20%
Open Notes Examination 80%
Recommended Books
Please view University online record: https://sta.rl.talis.com/index.html