PH5025
Nanophotonics
2019-2020
15
7
SCQF level 11
1
Academic year(s): 2019-2020
SCOTCAT credits : 15
ECTS credits : 7
Level : SCQF level 11
Semester: 1
Availability restrictions: Available only to students in a photonics taught postgraduate programme or the final year of an MPhys Honours Programme
Planned timetable:
Nanophotonics deals with structured materials on the nanoscale for the manipulation of light. Photonic crystals and plasmonic metamaterials are hot topics in contemporary photonics, and form part of the School's research programme. The properties of these materials can be designed to a significant extent via their structure. Many of the properties of these nanostructured materials can be understood from their dispersion diagram or optical band-structure, which is a core tool that will be explored in the module. Familiar concepts such as optical waveguides and cavities, multilayer mirrors and interference effects will be used to explain more complex features such as slow light propagation and high Q cavities in photonic crystal waveguides and supercontinuum generation in photonic crystal fibres. Propagating and localized plasmons will be explained and will include the novel effects of super-lensing and advanced phase control in metamaterials.
Pre-requisite(s): Postgraduates: students should be familiar with Maxwell's Equations of Electromagnetism in differential form.. Undergraduates: before taking this module you must take PH3061 and ( take PH3081 or take PH3082 ) and ( take PH4027 or take PH4034 or take PH4035 )
Anti-requisite(s): You cannot take this module if you take PH5183
Weekly contact: 3 lectures/tutorials (x 10 weeks)
Scheduled learning hours: 30
Guided independent study hours: 120
As used by St Andrews: 2-hour Written Examination = 80%, Coursework = 20%
As defined by QAA
Written examinations : 80%
Practical examinations : 0%
Coursework: 20%
Re-assessment: Oral Re-assessment, capped at grade 7
Module coordinator: Professor A Di Falco
Module teaching staff: Dr A Di Falco, Dr L O'Faolain
Module coordinator email adf10@st-andrews.ac.uk
Students will be able to:
Synopsis
Topics covered include:
Additional information on continuous assessment etc.
The continuous assessment will be based on 3 assessed tutorials. The solutions will be discussed in class.
Recommended Books
John D. Joannopoulos, Photonic Crystals: Molding the flow of light, Princeton University Press, Princeton (2008).
Stefan Meier, Plasmonics: Fundamentals and applications, Springer, New York (2007).
General information
Please also read the general information in the School's honours handbook that is available via st-andrews.ac.uk/physics/staff_students/timetables.php.